
1 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Using Chef InSpec to Achieve
Compliance Automation with
Ansible

USER GUIDE

2 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Table of Contents

SHIFT-LEFT WITH COMPLIANCE AUTOMATION .. 3

CODE TESTING: VALIDATE ANSIBLE PLAYBOOKS WITH INSPEC AND TEST KITCHEN .. 3

TEST WEBSERVER AUTOMATION WITH INSPEC & ANSIBLE ... 5

SECURITY ASSESSMENT: DETECT AND CORRECT VULNERABILITIES WITH INSPEC & ANSIBLE 10

DETECT AND CORRECT: THE POODLE VULNERABILITY .. 10

COMPLIANCE AUDITING: SCANNING ANSIBLE ENVIRONMENTS WITH INSPEC ... 14

COMPLIANCE REPORTS IN CHEF AUTOMATE ... 16

SUMMARY ... 18

RESOURCES.. 18

`

3 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Shift-Left with Compliance Automation
The concept of "shifting testing left" has grown in popularity, but many organizations often

don't thoroughly test new code until it's being readied for production. Discovering issues at that

late stage can delay releases, lead to unplanned work, and even cause costly rollbacks. The

earlier code is tested in a DevOps workflow, the earlier problems can be addressed, saving time

and reducing stress.

But testing is only part of the picture. Shifting security and compliance left can reap many

benefits, often in use-cases where the stakes are high. To achieve continuous compliance, your

organization must be able to detect misconfigurations and security flaws consistently

throughout every stage of the software development cycle. This paper looks at three distinct

kinds of detection:

• Code Testing: Does my code behave the way I expect it to?

• Security Assessment: Is my environment vulnerable to known exploits?

• Compliance Auditing: Does my environment comply with defined compliance

frameworks?

While there is some overlap between these concerns, they are distinct in their purpose and

scope. Yet, they share one important quality: All three can be measured by assessing a running

environment against a defined expectation. And of course, organizations benefit by assessing

all three early in a product development cycle.

Chef InSpec is a tool designed to tackle all three areas and is unique in the industry as the only

testing and compliance tool built from the ground up to be used by stakeholders across your

organization, allowing security, operations, QA, and development to have a unified way of

collaborating on requirements. Since InSpec only evaluates system state – and does not

implement configuration changes – it can be run continuously as a means to automate your

evaluation in every environment you manage. The following sections highlight how you can use

InSpec alongside Ansible to ensure continuous compliance across your estate.

Code Testing: Validate Ansible Playbooks with
InSpec and Test Kitchen
Test Kitchen is a testing system included in Chef Workstation (formerly ChefDK) to allow users

to quickly evaluate configuration management code on ephemeral test infrastructure – like

VMs, Docker containers and cloud instances – and then validate the results. It formalizes the

testing process into four steps:

https://docs.chef.io/workstation/kitchen/

4 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Within Test Kitchen, these steps can be run individually, or all at once via a single command:

"kitchen test".

What's particularly unique about Test Kitchen is that you can customize each step via a variety

of plugins, making it valuable even to organizations that aren't using Chef to automate

infrastructure. The following example illustrates this by showing how Test Kitchen can be used

to verify an Ansible playbook using Chef InSpec.

5 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Test Webserver Automation with InSpec & Ansible
A common automation task is configuring a secure webserver. As mentioned, a good place to

start is to define an expectation that can be used to measure success, for example, confirming

that your webserver is listening on the correct port (443 and not the default 80), and serving

valid content. With InSpec, these requirements can be defined as "resources," and within those

resources, your expected results are defined by "matchers." The below content is saved in a

local file in tests/website-https_verify.rb. For easy reference, all the code

examples used in this white paper are available at https://github.com/chef/chef-

examples/tree/main/chef-and-ansible.

describe port(443) do

 it { should be_listening }

end

describe http('https://localhost/', ssl_verify: false)do

 its('status') { should cmp 200 }

 its('body') { should match /Hello, world!/ }

end

describe ssl(port: 443).protocols('ssl3') do
 it { should_not be_enabled }

end

describe ssl(port: 443).protocols('tls1.2') do
 it { should be_enabled }

end

Note that these are simple functional tests that don't specify a particular implementation of

your webserver. Whatever technology is in use, these resources will determine:

• Is my server listening on port 443?

• Does making a web request to localhost return a valid status?

• Does that web request return the expected content ("Hello, world!")?

This is important because it means you can validate systems regardless of how they were

initially configured. Whether your systems are configured with a tool like Chef Infra or Ansible,

manually configured as legacy or brownfield environments, with VM or AMI templates, or a

combination, Chef InSpec can evaluate the running state of those systems consistently. This

allows you to easily move from manual operations to automation while ensuring that all

configurations are correct.

https://github.com/chef/chef-examples/tree/main/chef-and-ansible
https://github.com/chef/chef-examples/tree/main/chef-and-ansible

6 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

In Ansible, configurations are defined in YAML files, and an example playbook (named

website_https.yml) to configure Apache and create certificates might look like this:

- hosts: myhost
 remote_user: root
 become: yes
 vars:
 conftext: |
 <VirtualHost *:443>

 DocumentRoot "/var/www/helloworld"

 SSLEngine on

 SSLCertificateFile /etc/apache2/certs/apache.crt

 SSLCertificateKeyFile /etc/apache2/certs/apache.key

 <Directory "/var/www/helloworld">

 allow from all

 Options None

 Require all granted

 </Directory>

 </VirtualHost>

 webtext: |

 <html>

 <head><title>Test Site</title>/head>

 <body>

 <h1>Hello, world!</h1>

 <p>The site is up and running</p>

 </body>

 </html>

 tasks:

 - name: Update apt cache

 apt: update_cache=true
 - name: Install necessary packages

 apt:

 name: apache2=2.4.41-4ubuntu3.9

 - name: Install curl, openssl, PyOpenSSL

 apt:

 pkg:

 - curl

 - openssl

 - python3-openssl

 - name: Create a directory for certs

 file:

 path: /etc/apache2/certs

 state: directory

7 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

 mode: 0640

 - name: Generate an openssl key

 openssl_privatekey:

 path: /etc/apache2/certs/apache.key

 - name: Generate an openssl csr

 openssl_csr:

 path: /etc/apache2/certs/apache.csr

 privatekey_path: /etc/apache2/certs/apache.key

 common_name: myhost

 - name: Generate a self-signed openssl certificate

 openssl_certificate:

 path: /etc/apache2/certs/apache.crt

 privatekey_path: /etc/apache2/certs/apache.key

 csr_path: /etc/apache2/certs/apache.csr

 provider: selfsigned

 - name: Configure Hello World virtual host

 copy:

 content: "{{ conftext }}"
 dest: /etc/apache2/sites-available/helloworld.conf
 mode: 0640
 force: yes

 - name: Create the helloworld directory

 file:

 path: /var/www/helloworld

 state: directory

 mode: 0755

 - name: Deploy the Hello World website

 copy:
 content: "{{ webtext }}"
 dest: /var/www/helloworld/index.html

 owner: root

 group: root

 mode: 0644
 force: yes

 - name: Deactivate the default virtualhost

 command: a2dissite 000-default

 - name: Activate the virtualhost

 command: a2ensite helloworld

8 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

 notify:

 - Restart apache

 - name: Activate SSL on Apache

 command: a2enmod ssl

 notify:

 - Restart sshd

 - Restart apache

 handlers:

 - name: Restart sshd

 ansible.builtin.service:

 name: sshd

 state: restarted

 - name: Restart apache
 ansible.builtin.service:
 name: apache2
 state: restarted

This playbook configures a website based on the expectations defined earlier in InSpec. To

evaluate, you can use Test Kitchen to quickly ensure that the playbook runs without errors, and

that the resulting state of the system it configures matches your expectations. Test Kitchen's

behavior is defined in a configuration file called kitchen.yml. The example below applies

the Ansible playbook configurations to an ephemeral Ubuntu 20.04 Vagrant node:

driver:

 name: vagrant

provisioner:

 hosts: myhost

 name: ansible_playbook

 require_ansible_repo: true

 ansible_verbose: true

 ansible_version: latest

 require_chef_for_busser: false

 playbook: website_https.yml

verifier:

 name: inspec

platforms:

 - name: ubuntu-20.04

9 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

suites:

 - name: default

 verifier:

 inspec_tests:

 - path: tests/website_https_verify.rb

The key sections to note in this configuration file are:

• driver: How should this ephemeral test instance be launched? This example uses

Vagrant, but you could also use Dokken (Docker), cloud instances or other hypervisors.

• provisioner: What tool should be used to configure the instance? This example uses the

Ansible playbook to configure the node.

• verifier: What tool should be used to validate the instance once it's been configured?

This example uses Chef InSpec and the website_https_verify.rb test profile

shown above.

In the above example, running "kitchen test" will take the following actions:

• Create: Launch a local Ubuntu 20.04 VM with Vagrant

• Converge: Apply the playbook defined in website_https.yml to the VM.

• Verify: Apply the website_https_verify.rb InSpec tests

• Destroy: If all of the above actions complete without error, destroy the instance when

complete.

If any of your configurations fail in the "converge" step, or any of your InSpec resources return a

failure, Test Kitchen will halt its execution and leave the VM running for further inspection.

Otherwise, the instance cleans up after itself, and you're ready to apply your playbook to the

instances you manage in dev, test or production environments with confidence.

10 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Security Assessment: Detect and Correct
Vulnerabilities with InSpec & Ansible
Another area where InSpec can have a profound impact on your organization is in security

assessment. New software vulnerabilities are always being discovered, and in order to secure

your estate, it's imperative to quickly assess whether your systems are impacted and remediate

them accordingly.

Detect and Correct: The POODLE Vulnerability

Several years ago, a vulnerability popularly known as POODLE was added to the national

vulnerability database and impacts SSL, the primary protocol for encrypted web traffic. In this

vulnerability, SSLv3 was shown to contain a design flaw that allows attackers to obtain clear-

text content of ostensibly encrypted data. Therefore, the recommendation is to disable this

older SSL protocol and use only Transport Level Security (TLS) connections on modern

webservers.

Chef InSpec includes an "ssl" resource that can be used to determine whether or not your

servers are configured with SSLv3 support. In the above example, you added resources to the

website_https_verify.rb profile to verify SSLv3 is not running, and TLS is:

describe ssl(port: 443).protocols('ssl3') do

 it { should_not be_enabled }

end

describe ssl(port: 443).protocols('tls1.2') do
 it { should be_enabled }

done

11 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

As you saw in the previous example, Test Kitchen helped evaluate code updates on temporary

infrastructure, but when it comes to vulnerability assessment, it's important to be able to check

your live systems. Chef Workstation includes the inspec command-line utility, which can be

used to directly scan systems you manage over SSH or WinRM. To assess one of your servers,

you can run the following command:

$ inspec exec test/website_https_verify.rb -t

ssh://myuser@myhost

$ inspec exec test/website_https_verify.rb -t

winrm://Administrator@myhost -P 'mypassword'

When you run the above command against one of your servers, you may get back a summary

that looks like this, showing your SSL configuration is not correct:

Profile: tests from website_https_verify.rb

Version: (not specified)

Target: ssh://myuser@myhost:22

 SSL/TLS on

 ∅ myhost:443 with protocol == "ssl3" should not be enabled
 expected SSL/TLS on myhost:443 with protocol == "ssl3" not

 to be enabled

As mentioned, the remediation for POODLE is to allow only the TLS protocols for SSL traffic in

your webserver’s configuration. Using Apache as an example again, a few simple Ansible

remediation tasks in a playbook called poodle_fix.yml might look like this:

…

tasks:

 - name: Fix SSL in Apache

 replace: dest=/etc/apache2/mods-available/ssl.conf

 regexp='^SSLProtocol.*$'

 replace='SSLProtocol -all +TLSv1.2'

 notify:

 - Restart apache2

 - Restart sshd

handlers:

 - name: Restart apache

12 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

 ansible.builtin.service:

 name: apache2

 state: restarted

 - name: Restart sshd

 ansible.builtin.service:

 name: sshd

 state: restarted

You can then execute this playbook on one of your hosts similarly to how it was scanned with

InSpec:

$ ansible-playbook poodle_fix.yml

PLAY [myhosts] ***

TASK [Gathering Facts]**

ok: [myhost]

TASK [Fix SSL in Apache] ***************************************

changed: [myhost]

RUNNING HANDLER [Restart sshd]**********************************

changed: [myhost]

RUNNING HANDLER [Restart apache2]*******************************

changed: [myhost]

PLAY RECAP ***

myhost : ok=4 changed=3 unreachable=0 failed=0

Updating Apache's SSL configuration and triggering a restart of the sshd and apache2 services,

should be sufficient to ensure your system is not vulnerable to POODLE. The operative word, of

course, is "should." With configuration management you can put the right configurations in

place, but without being able to functionally validate them, your job is only half done.

What if, for example, someone manually re-edited the Apache configuration file to re-enable

SSLv3, something you would not detect until some point in the future when you happen to re-

run this Ansible playbook on the machine? Because your compliance requirements have been

defined as code, validating your newly updated configuration is as simple as re-running the

same Chef InSpec scan to ensure SSLv3 is indeed disabled on your system.

13 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

$ inspec exec website_https_verify.rb -t ssh://myuser@myhost

Version: (not specified)

Target: ssh://myuser@myhost:22

 SSL/TLS on

 ü myhost:443 with protocol == "ssl3" should not be enabled

Test Summary: 1 successful, 0 failures, 0 skipped

Success!

14 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Compliance Auditing: Scanning Ansible
Environments with InSpec
Scanning Ansible environments with Inspec is functionally very similar to evaluating for security

problems. The biggest difference is that compliance frameworks formalize this process around

a set of known benchmarks. That said, auditing for compliance requires some extra

functionality that hasn't been covered so far. In particular, evaluating compliance will require:

• Impact Assessment: A compliance report needs to be able to filter individual results

based on their severity for prioritizing remediation.

• Role-Specific Granularity: Compliance officers, InfoSec teams and operators each have a

role in assessing compliance, but with varying levels of needed detail. High-level

summaries and detailed methodologies should both be available and easy to reference.

Chef InSpec controls are designed with these concerns in mind so that collecting multiple

validations into a Compliance Profile can be used to generate weighted reports with multiple

levels of granularity in Chef Automate, the graphical dashboard used to monitor hundreds or

thousands of systems at once. Here, simple Chef InSpec resources are included within controls

that include a title, description, tags and the actual InSpec resources that do the inspection.

control "Ensure_SSH_root_login_is_disabled" do
 title "Ensure SSH root login is disabled"
 desc "
 The PermitRootLogin parameter specifies if the root user can log in using

 ssh. The default is no.

 Rationale: Disallowing root logins over SSH requires system admins to

 authenticate using their own individual account, then escalating to root

 via sudo or su. This in turn limits opportunity for non-repudiation and

 provides a clear audit trail in the event of a security incident

 "

 tag group: 'SRG-OS-000112'

 tag vulid: 'V-38607'

 tag ruleid: 'SV-50408r1_rule'

 tag severity: 'CAT I'

 tag stigid: 'RHEL-08-000227'

 tag cci: 'CCI-000774'

 tag fixtext: 'PermitRootLogin should not be permitted. The default setting

 in "/etc/ssh/sshd_config" is correct, and can be verified by ensuring

 that the following line appears: PermitRootLogin no'
 impact 1.0
 describe.one do
 describe sshd_config("/etc/ssh/sshd_config") do
 its("PermitRootLogin") { should_not eq('yes') }
 end

 describe package("openssh-server") do
 it { should_not be_installed }
 end

15 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

 end

end

The above example, saved in a file called ssh_profile.rb, is an InSpec control, translating

a rule from the Red Hat Enterprise Linux 8 DISA STIG benchmarks. It provides examples of some

of the extra data necessary for thorough compliance evaluation. The "impact" of a control

defines its criticality on a range from 0.0 (minor) to 1.0 (critical). The "title" and "description"

provide a human-readable summary of what the control is validating. Each "tag" provides

added user-defined metadata, in this case referencing where requirements are defined in the

STIG. Finally, "sshd_config" is another example of an InSpec resource, like the "port", "http",

and "ssl" InSpec resources covered earlier.

16 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Compliance Reports in Chef Automate
Chef Automate provides a library of more than 500 pre-written Compliance Profiles, as well as

dashboards to give you a consolidated view of the compliance of your estate as a whole,

filterable by environments, server roles, and audit severity.

One challenge for Ansible users is that the default method for collecting this data was typically

via a specialized Chef Audit Cookbook, which runs InSpec and reports the results to Chef

Automate. In a Chef workflow, this cookbook would be pulled from a Chef Server, but for

organizations using Ansible, that's not always a feasible option. Thankfully, Chef Compliance

does away with the need to use the dedicated Chef Audit cookbook and allows users to include

Chef InSpec controls in any cookbook (or Ansible playbook) or as standalone tests, as shown in

the examples above. Chef Automate can ingest these profiles and allow users to generate

audits by running agentless scans directly from the Automate Server on any node – even if they

weren't configured with Chef.

To start, you'll need a Compliance Profile, which is a collection of InSpec controls organized

around a specific theme, like the single SSH control example shown above. Chef Automate

comes pre-loaded with a variety of profiles based on different compliance frameworks and

operating systems. You can view all available profiles by clicking Profiles > Available tab within

Automate's "Compliance" dashboard. Clicking the Get button next to any listing will add the

profile to your environment.

17 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Clicking Get installs the latest version of the profile, which can now be used to start scanning

your servers. From there, the Scan Jobs link on the left-hand menu can be used to define the

nodes you wish to scan, including hostnames, connection protocol (SSH or WinRM), and access

credentials. You can add nodes you want to scan in the Automate Settings tab under Node

Integrations > Automate. One or more nodes can be added with IP addresses are domain

names, and they don't need to have the Chef Client installed.

Once you have at least one profile and at least one node configured, you can create a "Scan

job."

Jobs can be configured for one-time, at-once execution or on a recurring schedule. Simply

select all the nodes you'd like to encapsulate in the job, and click "Create job" in the upper

right-hand corner.

Once the job has run, the scan job report is available in the dashboard and shows a high-level

summary of how your node(s) performed, and how many, if any, of the controls within your

profiles failed.

On each node, you can also view a detailed list of each control that was run, with any failed

nodes filterable based on their severity. From this same view, you can click on any individual

control for more details about its status, and even the raw InSpec source code.

Whether you're managing one server, or thousands, Chef Automate provides a single pane of

glass for views into compliance performance across your estate. Within Automate's

dashboards, you can view results with whatever level of granularity you require in your role –

all without needing to install any agents on your servers.

18 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

Summary
To deliver software at high velocity, it's critical to have the means to detect misconfigurations

and security flaws consistently and continuously across all the systems you manage. Chef

InSpec and Ansible are both designed with automation and repeatability in mind, and together

help ensure that you can deliver software quickly, efficiently, and above all, securely. With Chef

Automate you can take this process further with a library of pre-written profiles to jump-start

your compliance, and a single window into the health of every environment you manage.

Resources
Learning

• Test Expectations with InSpec:

https://learn.chef.io/courses/course-v1:chef+Inspec101+Perpetual/about

• Chef Compliance: First Steps with Auditing and Remediation:

https://learn.chef.io/courses/course-v1:chef+SECCOM101+Perpetual/about

• Chef Principles Certification Exam: https://learn.chef.io/courses/course-

v1:chef+CP101+exam/about?_ga=2.152463609.1126152281.1641392943-

2046324149.1631017558

Documentation

• InSpec Docs: https://docs.chef.io/inspec/

• Chef Automate Docs: https://docs.chef.io/automate/

Blogs, Web pages & Webinars

• Chef and Ansible: https://www.chef.io/ansible

• Chef Infra 101: Road to Best Practices: https://www.chef.io/blog/chef-infra-101-the-

road-to-best-practices

https://learn.chef.io/courses/course-v1:chef+Inspec101+Perpetual/about
https://learn.chef.io/courses/course-v1:chef+SECCOM101+Perpetual/about
https://learn.chef.io/courses/course-v1:chef+CP101+exam/about?_ga=2.152463609.1126152281.1641392943-2046324149.1631017558
https://learn.chef.io/courses/course-v1:chef+CP101+exam/about?_ga=2.152463609.1126152281.1641392943-2046324149.1631017558
https://learn.chef.io/courses/course-v1:chef+CP101+exam/about?_ga=2.152463609.1126152281.1641392943-2046324149.1631017558
https://docs.chef.io/inspec/
https://docs.chef.io/automate/
https://www.chef.io/ansible
https://www.chef.io/blog/chef-infra-101-the-road-to-best-practices
https://www.chef.io/blog/chef-infra-101-the-road-to-best-practices

19 © 2022 Progress Software Corporation and/or its subsidiaries or

affiliates. All rights reserved.

About Progress

Dedicated to propelling business forward in a technology-driven world, Progress (NASDAQ: PRGS)

helps businesses drive faster cycles of innovation, fuel momentum and accelerate their path to

success. As the trusted provider of the best products to develop, deploy and manage high- impact

applications, Progress enables customers to develop the applications and experiences they need,

deploy where and how they want and manage it all safely and securely. Hundreds of thousands of

enterprises, including 1,700 software companies and 3.5 million developers, depend on Progress

to achieve their goals—with confidence. Learn more at www.progress.com.

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

facebook.com/getchefdotcom

twitter.com/chef

youtube.com/getchef

linkedin.com/company/chef-software

learn.chef.io

github.com/chef

twitch.tv/chefsoftware

https://www.progress.com/
https://www.progress.com/
https://www.facebook.com/getchefdotcom
https://twitter.com/chef
https://www.youtube.com/user/getchef
https://www.linkedin.com/company/chef-software
https://learn.chef.io/
https://github.com/chef
https://www.twitch.tv/chefsoftware

	Shift-Left with Compliance Automation
	Code Testing: Validate Ansible Playbooks with InSpec and Test Kitchen
	Test Webserver Automation with InSpec & Ansible
	Security Assessment: Detect and Correct Vulnerabilities with InSpec & Ansible
	Detect and Correct: The POODLE Vulnerability

	Compliance Auditing: Scanning Ansible Environments with InSpec
	Compliance Reports in Chef Automate
	Summary
	Resources
	 Chef and Ansible: https://www.chef.io/ansible
	 Chef Infra 101: Road to Best Practices: https://www.chef.io/blog/chef-infra-101-the-road-to-best-practices

